乔喻彬彬有礼道。
张远堂愕然,昨天乔喻最后问的那个关于构建模态空间的问题,他思索了一晚上。
甚至跟田言真吃完饭后,还去看了两篇论文,并结合了他这些年针对素数的研究,打算给乔喻一些建议的。
结果这小子不按套路出牌……
“哦?那我先看看吧。”张远堂点了点头。
乔喻立刻打开包,拿出了厚厚的一叠手稿,然后直接一分为二。
一份递给了张远堂教授,一份递给了田导。
这个时候就显示出老薛的先见之明了。
告诉他书房应该有一个打印机,这样能方便许多,显然老薛说的没错。
打印两份就能让田导不会在张教授阅读他的手稿时感觉无聊,这方面乔喻一直很细心。
张远堂接过乔喻递来的手稿,下意识念出了标题:“多重超越空间上的广义模态数论公理体系?”
“对,其实就是昨晚我们还没讨论完的模态空间。不过回去之后觉得用模态空间来形容其实不太准确。
因为这套体系不止是模态空间,还有模态数跟模态映射等等,这些概念相互作用才能构建这套体系。”
乔喻点头答道。
张远堂跟田言真对视了一眼,然后两人便将注意力都放到了乔喻的手稿上。
简单浏览完乔喻给出的引言后,重点放在了之后的论证上。
随后第一句话就让张远堂脑子有些懵了。
好家伙,上来就自定义一种全新的数学结构lrscedelSpces,或者说S(λ,Ω)。
λ代表维度,Ω则代表所有可能的无限边界集合。
张远堂皱了皱眉头,下意识抬起头想看一眼乔喻,却发现这小子已经跑到了田言真办公桌后面的书柜那边去了。
像是打算在他们看这个构造的时候去挑本书看?
好吧,这大概也能算是好学吧?
张远堂收回了目光,这次彻底把注意力放在了乔喻给出的框架上。
一晚上,企图搭建一个公理框架?说实话,张远堂并不看好。
他甚至怀疑乔喻是不是在自嗨。数学家有着充分的自由度不假,但这个自由度是建立在严格的逻辑推理过程之上的。
一个完整的公理体系,既需要逻辑严谨更需要其具备适用性,以及具备稳定性。
严谨的逻辑确保了数学内部的一致性和可信度;适用性则关乎这套体系的实用价值;稳定则代表着在扩展中不会出现自相矛盾的情况。
逻辑严谨是必须的,适用性跟稳定性则需要把握好一个平衡。
总之,搭建一个全新的公理体系,绝对是一个极具挑战性的工作。
一晚上就想出如此宏伟的一个标题,以及光看其结构就能感觉到复杂度,这足以让张远堂用最挑剔的目光来审视乔喻的想法。
至于田言真……
好吧,虽然他对乔喻善于创造奇迹已经有了心理准备,不过他也有一丢丢觉得乔喻是不是在胡闹了。
当然只有一丢丢。
更多的还是期望乔喻是真的有较为成熟的想法,起码不要是一个笑话。
不过等到看进去之后,田言真便意识到这小子还没胆子大到跟大家乱开玩笑。
这份手稿有点东西。
尤其是不止是定义很清晰,甚至还贴心的列举出了许多详细的实例……
田言真甚至怀疑乔喻是不是提前就已经准备好了。
至于乔喻,已经找到了一本感兴趣的书,然后抽出来,坐到了旁边的张远堂旁边的沙发上默默开始阅读。
两位教授看他的手稿时,总不能傻坐着吧?这个时候玩手机似乎显得对教授们不太尊重,也只能看书了。
于是办公室里也彻底安静下来。只剩下偶尔翻书页时的声音。
就这样,办公室内安静了足足一个小时,乔喻翻书翻闷了,还拿出手机跟还在高铁上的乔曦聊了几句。
张远堂终于抬起了头。
乔喻的手稿已经翻完了,他的脑子有些乱,让他一时间不知道该如何评价。
他有点怀疑乔喻是个疯子,但又察觉到了如果这套公理体系真能搭建起来的数学前景,因为这太灵活了!
在乔喻打算构造的这套公理体系下,可以说任意一个数字,就是一个集合,任意一种运算,都能涵盖所有方向,并将数学从某种意义上说统一起来。
很抽象,但是灵活到让人发指!现实意义甚至比朗兰兹纲领要更大。
举一个最简单的例子:1 1=?
这个数学题随便让一个上过幼儿园的孩子,都能清晰说出答案。
但如果在乔喻设计的这套公理体系下,因为(1)={_α,β(1)∣(α,β)∈所有模态空间},(2)={_α,β(2)∣(α,β)∈所有模态空间}。
所以这个等式就成了:_α,β(1)⊕α,β_α,β(1)=_α,β(2)
如果带入模态参数,那么还能变形为:_α,β(1)⊕α,β_α,β(1)=_α,β(2 δα,β)
一旦在周期性的模态空间中,还能得出_α,β(1)⊕α,β_α,β(1)=_α,β(0)的结论。
因为这代表着1 1会回到“零”的模态值,形成模态空间中的闭合结构。
等等……
所以如果一定要给1 1在这套公理体系下一个通解,那就是:(1 1)={_α,β(1)⊕α,β_α,β(1)∣(α,β)∈所有模态空间}
让普通人来看,显然这是把简单的问题搞复杂了。
但对于一个数学家,尤其是一个研究数论的数学家而言,只感觉这特么的太灵活了!
不同的表达式直接代表着不同的层级结构,以及数学家想要赋予其的意义。
这意味着未来论文中,不需要再去自定义一堆赋予其特别意义的数学符号,把所有的数学构造都统合了起来。
要知道在传统的数论研究中,很多时候作者为了表达一个具体现象或问题,就不得不为特定结构自定义一套符号或定义,既增加了理解的难度,也不利于普遍推广。
没办法,传统的数学分析就是这么玩的。还有一个好听的名字,叫自定义框架。
但如果乔喻真能把这个框架做出来,就意味着为数论,甚至未来的代数几何研究,定义了一个高度灵活且统一的数学语言。
大家不需要在为某一个的问题去重新设计一套符号,只要从这个大框架中选择合适的表达式就够了!
这玩意儿能不能解决孪生素数猜想甚至都已经不重要了,因为这框架要是真做出来,并普及之后相当于未来数学研究拥有了一种类似于编程语言的东西。
显然旁边的田言真也已经意识到了这一点,抬头看向乔喻的目光有些审视,还有一丝茫然。
“能告诉我设计这个公理体系的目的吗?”张远堂沉默了半晌后,问出了第一个问题。
“这不是您说的吗?我们研究素数,先从做好数的归类开始。我这是把所有数字都规个类,您不觉得这样很方便接下来对素数的研究吗?
所以最终目的当然还是针对素数的研究啊。那个,您别看这个有点复杂了,但其实我想过了,这个框架下面,不管是对称性不变性分析都能方便很多。
尤其是您想想啊,如果我能把这个体系做出来,孪生素数猜想不就成了不同模态空间中,素数对的模态距离关系?
咱们不就能把数论跟几何之间的桥给搭建起来了吗?这样等我在做猜想研究的时候,就能把那些几何工具也纳入进来啊。
用几何工具分析数论问题,对称、不变性、周期性、曲率……
您想想,这样几何、拓扑、微分几何等等这些工具,在做数论分析的时候都能直接拿来就用,分析数论问题的视角是不是一下就广阔了?”
乔喻兴致勃勃而又颇为得意的说道。
当然如此设计这套公理系统乔喻也是有私心的。
乔曦以后要跟着师爷爷在几何方向发力了。他又已经打定主意了做数论方向的研究。那么怎么能让两人合力研究?
当然就需要一个统一的框架。
把一个复杂的数论问题拆分成诸多个几何问题进行分析,他就能堂而皇之的把老妈也纳入自己的研究团队。
这样出了成果,没人能有任何诟病。毕竟他的框架允许用几何方法解决数论问题。
光是想想都觉得这是件很有意思的事情。乔曦将成为他未来数论研究最贴心的助手。
显然对于乔喻来说一个人攀登高峰可没有两个人一起攀登来得有趣。更别提这样会更有成就感。
只是说完这些后,乔喻看着田言真跟张远堂面面相觑的样子,有些困惑。
不由狐疑的问道:“那个,我说的难道不对吗?还是说我这个体系目前设计的有什么问题?所以你们不太看好?”
张远堂深吸了口气说道:“就目前简单的定义跟你举的几个例子看来,目前还看不出什么问题,但……”
乔喻连忙抢答了句:“不好意思啊,张教授,我打断一下。的确现在我举的例子都简单了些,主要是时间关系,我还没来得及把更多的东西加入进去。
但实际上我还有很多想法。而且我思考过,这个框架完全可以把群论、图论等等理论都包容进去。
比如我们要定义一个模态群,它也可以包含所有可能的模态映射,而群运算则定义为映射的复合。
其实这样还能让模态映射之间的关系看起来更直观。嗯,怎么说呢……对,就好像经典对称群在几何变换中的作用。
再说图论,我们可以把任意一个模态空间理解为一个节点,节点的边直接表示模态映射。您想想,这样一来模态空间之间的关系是不是就可以通过图的连接来表示?
这样我们就能直接把模态空间的转换关系具象化了,使同模态之间的关系就可以通过图的连接路径来理解……”
乔喻说得愈发激动起来,有些思考还没那么成熟的点子,此时也像雨后春笋般从脑子里冒了出来。
本章节尚未完结,共3页当前第2页,请点击下一页继续阅读------>>>